c48d27d1723155423eb21195bf021af984a01bfd
[rtmpclient.git] / app / src / main / jni / libusb / libusb / os / wince_usb.c
1 /*
2  * Windows CE backend for libusb 1.0
3  * Copyright © 2011-2013 RealVNC Ltd.
4  * Large portions taken from Windows backend, which is
5  * Copyright © 2009-2010 Pete Batard <pbatard@gmail.com>
6  * With contributions from Michael Plante, Orin Eman et al.
7  * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer
8  * Major code testing contribution by Xiaofan Chen
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24
25 #include <libusbi.h>
26
27 #include <stdint.h>
28 #include <errno.h>
29 #include <inttypes.h>
30
31 #include "wince_usb.h"
32
33 // Forward declares
34 static int wince_clock_gettime(int clk_id, struct timespec *tp);
35 unsigned __stdcall wince_clock_gettime_threaded(void* param);
36
37 // Global variables
38 uint64_t hires_frequency, hires_ticks_to_ps;
39 int errno;
40 const uint64_t epoch_time = UINT64_C(116444736000000000);       // 1970.01.01 00:00:000 in MS Filetime
41 enum windows_version windows_version = WINDOWS_CE;
42 static int concurrent_usage = -1;
43 // Timer thread
44 // NB: index 0 is for monotonic and 1 is for the thread exit event
45 HANDLE timer_thread = NULL;
46 HANDLE timer_mutex = NULL;
47 struct timespec timer_tp;
48 volatile LONG request_count[2] = {0, 1};        // last one must be > 0
49 HANDLE timer_request[2] = { NULL, NULL };
50 HANDLE timer_response = NULL;
51 HANDLE driver_handle = INVALID_HANDLE_VALUE;
52
53 /*
54  * Converts a windows error to human readable string
55  * uses retval as errorcode, or, if 0, use GetLastError()
56  */
57 #if defined(ENABLE_LOGGING)
58 static char* windows_error_str(uint32_t retval)
59 {
60         static TCHAR wErr_string[ERR_BUFFER_SIZE];
61         static char err_string[ERR_BUFFER_SIZE];
62
63         DWORD size;
64         size_t i;
65         uint32_t error_code, format_error;
66
67         error_code = retval?retval:GetLastError();
68         
69         safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("[%d] "), error_code);
70         
71         size = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code,
72                 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &wErr_string[safe_tcslen(wErr_string)],
73                 ERR_BUFFER_SIZE - (DWORD)safe_tcslen(wErr_string), NULL);
74         if (size == 0) {
75                 format_error = GetLastError();
76                 if (format_error)
77                         safe_stprintf(wErr_string, ERR_BUFFER_SIZE,
78                                 _T("Windows error code %u (FormatMessage error code %u)"), error_code, format_error);
79                 else
80                         safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Unknown error code %u"), error_code);
81         } else {
82                 // Remove CR/LF terminators
83                 for (i=safe_tcslen(wErr_string)-1; ((wErr_string[i]==0x0A) || (wErr_string[i]==0x0D)); i--) {
84                         wErr_string[i] = 0;
85                 }
86         }
87         if (WideCharToMultiByte(CP_ACP, 0, wErr_string, -1, err_string, ERR_BUFFER_SIZE, NULL, NULL) < 0)
88         {
89                 strcpy(err_string, "Unable to convert error string");
90         }
91         return err_string;
92 }
93 #endif
94
95 static struct wince_device_priv *_device_priv(struct libusb_device *dev)
96 {
97         return (struct wince_device_priv *) dev->os_priv;
98 }
99
100 // ceusbkwrapper to libusb error code mapping
101 static int translate_driver_error(int error) 
102 {
103         switch (error) {
104                 case ERROR_INVALID_PARAMETER:
105                         return LIBUSB_ERROR_INVALID_PARAM;
106                 case ERROR_CALL_NOT_IMPLEMENTED:
107                 case ERROR_NOT_SUPPORTED:
108                         return LIBUSB_ERROR_NOT_SUPPORTED;
109                 case ERROR_NOT_ENOUGH_MEMORY:
110                         return LIBUSB_ERROR_NO_MEM;
111                 case ERROR_INVALID_HANDLE:
112                         return LIBUSB_ERROR_NO_DEVICE;
113                 case ERROR_BUSY:
114                         return LIBUSB_ERROR_BUSY;
115
116                 // Error codes that are either unexpected, or have 
117                 // no suitable LIBUSB_ERROR equivilant.
118                 case ERROR_CANCELLED:
119                 case ERROR_INTERNAL_ERROR:
120                 default:
121                         return LIBUSB_ERROR_OTHER;
122         }
123 }
124
125 static int init_dllimports()
126 {
127         DLL_LOAD(ceusbkwrapper.dll, UkwOpenDriver, TRUE);
128         DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceList, TRUE);
129         DLL_LOAD(ceusbkwrapper.dll, UkwReleaseDeviceList, TRUE);
130         DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceAddress, TRUE);
131         DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceDescriptor, TRUE);
132         DLL_LOAD(ceusbkwrapper.dll, UkwGetConfigDescriptor, TRUE);
133         DLL_LOAD(ceusbkwrapper.dll, UkwCloseDriver, TRUE);
134         DLL_LOAD(ceusbkwrapper.dll, UkwCancelTransfer, TRUE);
135         DLL_LOAD(ceusbkwrapper.dll, UkwIssueControlTransfer, TRUE);
136         DLL_LOAD(ceusbkwrapper.dll, UkwClaimInterface, TRUE);
137         DLL_LOAD(ceusbkwrapper.dll, UkwReleaseInterface, TRUE);
138         DLL_LOAD(ceusbkwrapper.dll, UkwSetInterfaceAlternateSetting, TRUE);
139         DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltHost, TRUE);
140         DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltDevice, TRUE);
141         DLL_LOAD(ceusbkwrapper.dll, UkwGetConfig, TRUE);
142         DLL_LOAD(ceusbkwrapper.dll, UkwSetConfig, TRUE);
143         DLL_LOAD(ceusbkwrapper.dll, UkwResetDevice, TRUE);
144         DLL_LOAD(ceusbkwrapper.dll, UkwKernelDriverActive, TRUE);
145         DLL_LOAD(ceusbkwrapper.dll, UkwAttachKernelDriver, TRUE);
146         DLL_LOAD(ceusbkwrapper.dll, UkwDetachKernelDriver, TRUE);
147         DLL_LOAD(ceusbkwrapper.dll, UkwIssueBulkTransfer, TRUE);
148         DLL_LOAD(ceusbkwrapper.dll, UkwIsPipeHalted, TRUE);
149         return LIBUSB_SUCCESS;
150 }
151
152 static int init_device(struct libusb_device *dev, UKW_DEVICE drv_dev,
153                                            unsigned char bus_addr, unsigned char dev_addr)
154 {
155         struct wince_device_priv *priv = _device_priv(dev);
156         int r = LIBUSB_SUCCESS;
157
158         dev->bus_number = bus_addr;
159         dev->device_address = dev_addr;
160         priv->dev = drv_dev;
161
162         if (!UkwGetDeviceDescriptor(priv->dev, &(priv->desc))) {
163                 r = translate_driver_error(GetLastError());
164         }
165         return r;
166 }
167
168 // Internal API functions
169 static int wince_init(struct libusb_context *ctx)
170 {
171         int i, r = LIBUSB_ERROR_OTHER;
172         HANDLE semaphore;
173         TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
174
175         _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
176         semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
177         if (semaphore == NULL) {
178                 usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0));
179                 return LIBUSB_ERROR_NO_MEM;
180         }
181
182         // A successful wait brings our semaphore count to 0 (unsignaled)
183         // => any concurent wait stalls until the semaphore's release
184         if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
185                 usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0));
186                 CloseHandle(semaphore);
187                 return LIBUSB_ERROR_NO_MEM;
188         }
189
190         // NB: concurrent usage supposes that init calls are equally balanced with
191         // exit calls. If init is called more than exit, we will not exit properly
192         if ( ++concurrent_usage == 0 ) {        // First init?
193                 // Initialize pollable file descriptors
194                 init_polling();
195
196                 // Load DLL imports
197                 if (init_dllimports() != LIBUSB_SUCCESS) {
198                         usbi_err(ctx, "could not resolve DLL functions");
199                         r = LIBUSB_ERROR_NOT_SUPPORTED;
200                         goto init_exit;
201                 }
202
203                 // try to open a handle to the driver
204                 driver_handle = UkwOpenDriver();
205                 if (driver_handle == INVALID_HANDLE_VALUE) {
206                         usbi_err(ctx, "could not connect to driver");
207                         r = LIBUSB_ERROR_NOT_SUPPORTED;
208                         goto init_exit;
209                 }
210
211                 // Windows CE doesn't have a way of specifying thread affinity, so this code
212                 // just has  to hope QueryPerformanceCounter doesn't report different values when
213                 // running on different cores.
214                 r = LIBUSB_ERROR_NO_MEM;
215                 for (i = 0; i < 2; i++) {
216                         timer_request[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
217                         if (timer_request[i] == NULL) {
218                                 usbi_err(ctx, "could not create timer request event %d - aborting", i);
219                                 goto init_exit;
220                         }
221                 }
222                 timer_response = CreateSemaphore(NULL, 0, MAX_TIMER_SEMAPHORES, NULL);
223                 if (timer_response == NULL) {
224                         usbi_err(ctx, "could not create timer response semaphore - aborting");
225                         goto init_exit;
226                 }
227                 timer_mutex = CreateMutex(NULL, FALSE, NULL);
228                 if (timer_mutex == NULL) {
229                         usbi_err(ctx, "could not create timer mutex - aborting");
230                         goto init_exit;
231                 }
232                 timer_thread = CreateThread(NULL, 0, wince_clock_gettime_threaded, NULL, 0, NULL);
233                 if (timer_thread == NULL) {
234                         usbi_err(ctx, "Unable to create timer thread - aborting");
235                         goto init_exit;
236                 }
237
238                 // Wait for timer thread to init before continuing.
239                 if (WaitForSingleObject(timer_response, INFINITE) != WAIT_OBJECT_0) {
240                         usbi_err(ctx, "Failed to wait for timer thread to become ready - aborting");
241                         goto init_exit;
242                 }
243         }
244         // At this stage, either we went through full init successfully, or didn't need to
245         r = LIBUSB_SUCCESS;
246
247 init_exit: // Holds semaphore here.
248         if (!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed?
249                 if (driver_handle != INVALID_HANDLE_VALUE) {
250                         UkwCloseDriver(driver_handle);
251                         driver_handle = INVALID_HANDLE_VALUE;
252                 }
253                 if (timer_thread) {
254                         SetEvent(timer_request[1]); // actually the signal to quit the thread.
255                         if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
256                                 usbi_warn(ctx, "could not wait for timer thread to quit");
257                                 TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying
258                                                                                                   // all objects it might have held anyway.
259                         }
260                         CloseHandle(timer_thread);
261                         timer_thread = NULL;
262                 }
263                 for (i = 0; i < 2; i++) {
264                         if (timer_request[i]) {
265                                 CloseHandle(timer_request[i]);
266                                 timer_request[i] = NULL;
267                         }
268                 }
269                 if (timer_response) {
270                         CloseHandle(timer_response);
271                         timer_response = NULL;
272                 }
273                 if (timer_mutex) {
274                         CloseHandle(timer_mutex);
275                         timer_mutex = NULL;
276                 }
277         }
278
279         if (r != LIBUSB_SUCCESS)
280                 --concurrent_usage; // Not expected to call libusb_exit if we failed.
281
282         ReleaseSemaphore(semaphore, 1, NULL);   // increase count back to 1
283         CloseHandle(semaphore);
284         return r;
285 }
286
287 static void wince_exit(void)
288 {
289         int i;
290         HANDLE semaphore;
291         TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
292
293         _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
294         semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
295         if (semaphore == NULL) {
296                 return;
297         }
298
299         // A successful wait brings our semaphore count to 0 (unsignaled)
300         // => any concurent wait stalls until the semaphore release
301         if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
302                 CloseHandle(semaphore);
303                 return;
304         }
305
306         // Only works if exits and inits are balanced exactly
307         if (--concurrent_usage < 0) {   // Last exit
308                 exit_polling();
309
310                 if (timer_thread) {
311                         SetEvent(timer_request[1]); // actually the signal to quit the thread.
312                         if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
313                                 usbi_dbg("could not wait for timer thread to quit");
314                                 TerminateThread(timer_thread, 1);
315                         }
316                         CloseHandle(timer_thread);
317                         timer_thread = NULL;
318                 }
319                 for (i = 0; i < 2; i++) {
320                         if (timer_request[i]) {
321                                 CloseHandle(timer_request[i]);
322                                 timer_request[i] = NULL;
323                         }
324                 }
325                 if (timer_response) {
326                         CloseHandle(timer_response);
327                         timer_response = NULL;
328                 }
329                 if (timer_mutex) {
330                         CloseHandle(timer_mutex);
331                         timer_mutex = NULL;
332                 }
333                 if (driver_handle != INVALID_HANDLE_VALUE) {
334                         UkwCloseDriver(driver_handle);
335                         driver_handle = INVALID_HANDLE_VALUE;
336                 }
337         }
338
339         ReleaseSemaphore(semaphore, 1, NULL);   // increase count back to 1
340         CloseHandle(semaphore);
341 }
342
343 static int wince_get_device_list(
344         struct libusb_context *ctx,
345         struct discovered_devs **discdevs)
346 {
347         UKW_DEVICE devices[MAX_DEVICE_COUNT];
348         struct discovered_devs * new_devices = *discdevs;
349         DWORD count = 0, i;
350         struct libusb_device *dev = NULL;
351         unsigned char bus_addr, dev_addr;
352         unsigned long session_id;
353         BOOL success;
354         DWORD release_list_offset = 0;
355         int r = LIBUSB_SUCCESS;
356
357         success = UkwGetDeviceList(driver_handle, devices, MAX_DEVICE_COUNT, &count);
358         if (!success) {
359                 int libusbErr = translate_driver_error(GetLastError());
360                 usbi_err(ctx, "could not get devices: %s", windows_error_str(0));
361                 return libusbErr;
362         }
363         for(i = 0; i < count; ++i) {
364                 release_list_offset = i;
365                 success = UkwGetDeviceAddress(devices[i], &bus_addr, &dev_addr, &session_id);
366                 if (!success) {
367                         r = translate_driver_error(GetLastError());
368                         usbi_err(ctx, "could not get device address for %d: %s", i, windows_error_str(0));
369                         goto err_out;
370                 }
371                 dev = usbi_get_device_by_session_id(ctx, session_id);
372                 if (dev) {
373                         usbi_dbg("using existing device for %d/%d (session %ld)",
374                                         bus_addr, dev_addr, session_id);
375                         // Release just this element in the device list (as we already hold a 
376                         // reference to it).
377                         UkwReleaseDeviceList(driver_handle, &devices[i], 1);
378                         release_list_offset++;
379                 } else {
380                         usbi_dbg("allocating new device for %d/%d (session %ld)",
381                                         bus_addr, dev_addr, session_id);
382                         dev = usbi_alloc_device(ctx, session_id);
383                         if (!dev) {
384                                 r = LIBUSB_ERROR_NO_MEM;
385                                 goto err_out;
386                         }
387                         r = init_device(dev, devices[i], bus_addr, dev_addr);
388                         if (r < 0)
389                                 goto err_out;
390                         r = usbi_sanitize_device(dev);
391                         if (r < 0)
392                                 goto err_out;
393                 }
394                 new_devices = discovered_devs_append(new_devices, dev);
395                 if (!discdevs) {
396                         r = LIBUSB_ERROR_NO_MEM;
397                         goto err_out;
398                 }
399                 safe_unref_device(dev);
400         }
401         *discdevs = new_devices;
402         return r;
403 err_out:
404         *discdevs = new_devices;
405         safe_unref_device(dev);
406         // Release the remainder of the unprocessed device list.
407         // The devices added to new_devices already will still be passed up to libusb, 
408         // which can dispose of them at its leisure.
409         UkwReleaseDeviceList(driver_handle, &devices[release_list_offset], count - release_list_offset);
410         return r;
411 }
412
413 static int wince_open(struct libusb_device_handle *handle)
414 {
415         // Nothing to do to open devices as a handle to it has
416         // been retrieved by wince_get_device_list
417         return LIBUSB_SUCCESS;
418 }
419
420 static void wince_close(struct libusb_device_handle *handle)
421 {
422         // Nothing to do as wince_open does nothing.
423 }
424
425 static int wince_get_device_descriptor(
426    struct libusb_device *device,
427    unsigned char *buffer, int *host_endian)
428 {
429         struct wince_device_priv *priv = _device_priv(device);
430
431         *host_endian = 1;
432         memcpy(buffer, &priv->desc, DEVICE_DESC_LENGTH);
433         return LIBUSB_SUCCESS;
434 }
435
436 static int wince_get_active_config_descriptor(
437         struct libusb_device *device,
438         unsigned char *buffer, size_t len, int *host_endian)
439 {
440         struct wince_device_priv *priv = _device_priv(device);
441         DWORD actualSize = len;
442         *host_endian = 0;
443         if (!UkwGetConfigDescriptor(priv->dev, UKW_ACTIVE_CONFIGURATION, buffer, len, &actualSize)) {
444                 return translate_driver_error(GetLastError());
445         }
446         return actualSize;
447 }
448
449 static int wince_get_config_descriptor(
450         struct libusb_device *device,
451         uint8_t config_index,
452         unsigned char *buffer, size_t len, int *host_endian)
453 {
454         struct wince_device_priv *priv = _device_priv(device);
455         DWORD actualSize = len;
456         *host_endian = 0;
457         if (!UkwGetConfigDescriptor(priv->dev, config_index, buffer, len, &actualSize)) {
458                 return translate_driver_error(GetLastError());
459         }
460         return actualSize;
461 }
462
463 static int wince_get_configuration(
464    struct libusb_device_handle *handle,
465    int *config)
466 {
467         struct wince_device_priv *priv = _device_priv(handle->dev);
468         UCHAR cv = 0;
469         if (!UkwGetConfig(priv->dev, &cv)) {
470                 return translate_driver_error(GetLastError());
471         }
472         (*config) = cv;
473         return LIBUSB_SUCCESS;
474 }
475
476 static int wince_set_configuration(
477         struct libusb_device_handle *handle,
478         int config)
479 {
480         struct wince_device_priv *priv = _device_priv(handle->dev);
481         // Setting configuration 0 places the device in Address state.
482         // This should correspond to the "unconfigured state" required by
483         // libusb when the specified configuration is -1.
484         UCHAR cv = (config < 0) ? 0 : config;
485         if (!UkwSetConfig(priv->dev, cv)) {
486                 return translate_driver_error(GetLastError());
487         }
488         return LIBUSB_SUCCESS;
489 }
490
491 static int wince_claim_interface(
492         struct libusb_device_handle *handle,
493         int interface_number)
494 {
495         struct wince_device_priv *priv = _device_priv(handle->dev);
496         if (!UkwClaimInterface(priv->dev, interface_number)) {
497                 return translate_driver_error(GetLastError());
498         }
499         return LIBUSB_SUCCESS;
500 }
501
502 static int wince_release_interface(
503         struct libusb_device_handle *handle,
504         int interface_number)
505 {
506         struct wince_device_priv *priv = _device_priv(handle->dev);
507         if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, 0)) {
508                 return translate_driver_error(GetLastError());
509         }
510         if (!UkwReleaseInterface(priv->dev, interface_number)) {
511                 return translate_driver_error(GetLastError());
512         }
513         return LIBUSB_SUCCESS;
514 }
515
516 static int wince_set_interface_altsetting(
517         struct libusb_device_handle *handle,
518         int interface_number, int altsetting)
519 {
520         struct wince_device_priv *priv = _device_priv(handle->dev);
521         if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, altsetting)) {
522                 return translate_driver_error(GetLastError());
523         }
524         return LIBUSB_SUCCESS;
525 }
526
527 static int wince_clear_halt(
528         struct libusb_device_handle *handle,
529         unsigned char endpoint)
530 {
531         struct wince_device_priv *priv = _device_priv(handle->dev);
532         if (!UkwClearHaltHost(priv->dev, endpoint)) {
533                 return translate_driver_error(GetLastError());
534         }
535         if (!UkwClearHaltDevice(priv->dev, endpoint)) {
536                 return translate_driver_error(GetLastError());
537         }
538         return LIBUSB_SUCCESS;
539 }
540
541 static int wince_reset_device(
542         struct libusb_device_handle *handle)
543 {
544         struct wince_device_priv *priv = _device_priv(handle->dev);
545         if (!UkwResetDevice(priv->dev)) {
546                 return translate_driver_error(GetLastError());
547         }
548         return LIBUSB_SUCCESS;
549 }
550
551 static int wince_kernel_driver_active(
552         struct libusb_device_handle *handle,
553         int interface_number)
554 {
555         struct wince_device_priv *priv = _device_priv(handle->dev);
556         BOOL result = FALSE;
557         if (!UkwKernelDriverActive(priv->dev, interface_number, &result)) {
558                 return translate_driver_error(GetLastError());
559         }
560         return result ? 1 : 0;
561 }
562
563 static int wince_detach_kernel_driver(
564         struct libusb_device_handle *handle,
565         int interface_number)
566 {
567         struct wince_device_priv *priv = _device_priv(handle->dev);
568         if (!UkwDetachKernelDriver(priv->dev, interface_number)) {
569                 return translate_driver_error(GetLastError());
570         }
571         return LIBUSB_SUCCESS;
572 }
573
574 static int wince_attach_kernel_driver(
575         struct libusb_device_handle *handle,
576         int interface_number)
577 {
578         struct wince_device_priv *priv = _device_priv(handle->dev);
579         if (!UkwAttachKernelDriver(priv->dev, interface_number)) {
580                 return translate_driver_error(GetLastError());
581         }       
582         return LIBUSB_SUCCESS;
583 }
584
585 static void wince_destroy_device(
586         struct libusb_device *dev)
587 {
588         struct wince_device_priv *priv = _device_priv(dev);
589         UkwReleaseDeviceList(driver_handle, &priv->dev, 1);
590 }
591
592 static void wince_clear_transfer_priv(
593         struct usbi_transfer *itransfer)
594 {
595         struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
596         struct winfd wfd = fd_to_winfd(transfer_priv->pollable_fd.fd);
597         // No need to cancel transfer as it is either complete or abandoned
598         wfd.itransfer = NULL;
599         CloseHandle(wfd.handle);
600         usbi_free_fd(&transfer_priv->pollable_fd);
601 }
602
603 static int wince_cancel_transfer(
604         struct usbi_transfer *itransfer)
605 {
606         struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
607         struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
608         struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
609         
610         if (!UkwCancelTransfer(priv->dev, transfer_priv->pollable_fd.overlapped, UKW_TF_NO_WAIT)) {
611                 return translate_driver_error(GetLastError());
612         }
613         return LIBUSB_SUCCESS;
614 }
615
616 static int wince_submit_control_or_bulk_transfer(struct usbi_transfer *itransfer)
617 {
618         struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
619         struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev);
620         struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
621         struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
622         BOOL direction_in, ret;
623         struct winfd wfd;
624         DWORD flags;
625         HANDLE eventHandle;
626         PUKW_CONTROL_HEADER setup = NULL;
627         const BOOL control_transfer = transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL;
628
629         transfer_priv->pollable_fd = INVALID_WINFD;
630         if (control_transfer) {
631                 setup = (PUKW_CONTROL_HEADER) transfer->buffer;
632                 direction_in = setup->bmRequestType & LIBUSB_ENDPOINT_IN;
633         } else {
634                 direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN;
635         }
636         flags = direction_in ? UKW_TF_IN_TRANSFER : UKW_TF_OUT_TRANSFER;
637         flags |= UKW_TF_SHORT_TRANSFER_OK;
638
639         eventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
640         if (eventHandle == NULL) {
641                 usbi_err(ctx, "Failed to create event for async transfer");
642                 return LIBUSB_ERROR_NO_MEM;
643         }
644
645         wfd = usbi_create_fd(eventHandle, direction_in ? RW_READ : RW_WRITE, itransfer, &wince_cancel_transfer);
646         if (wfd.fd < 0) {
647                 CloseHandle(eventHandle);
648                 return LIBUSB_ERROR_NO_MEM;
649         }
650
651         transfer_priv->pollable_fd = wfd;
652         if (control_transfer) {
653                 // Split out control setup header and data buffer
654                 DWORD bufLen = transfer->length - sizeof(UKW_CONTROL_HEADER);
655                 PVOID buf = (PVOID) &transfer->buffer[sizeof(UKW_CONTROL_HEADER)];
656
657                 ret = UkwIssueControlTransfer(priv->dev, flags, setup, buf, bufLen, &transfer->actual_length, wfd.overlapped);
658         } else {
659                 ret = UkwIssueBulkTransfer(priv->dev, flags, transfer->endpoint, transfer->buffer, 
660                         transfer->length, &transfer->actual_length, wfd.overlapped);
661         }
662         if (!ret) {
663                 int libusbErr = translate_driver_error(GetLastError());
664                 usbi_err(ctx, "UkwIssue%sTransfer failed: error %d",
665                         control_transfer ? "Control" : "Bulk", GetLastError());
666                 wince_clear_transfer_priv(itransfer);
667                 return libusbErr;
668         }
669         usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, direction_in ? POLLIN : POLLOUT);
670         itransfer->flags |= USBI_TRANSFER_UPDATED_FDS;
671
672         return LIBUSB_SUCCESS;
673 }
674
675 static int wince_submit_iso_transfer(struct usbi_transfer *itransfer)
676 {
677         return LIBUSB_ERROR_NOT_SUPPORTED;
678 }
679
680 static int wince_submit_transfer(
681         struct usbi_transfer *itransfer)
682 {
683         struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
684
685         switch (transfer->type) {
686         case LIBUSB_TRANSFER_TYPE_CONTROL:
687         case LIBUSB_TRANSFER_TYPE_BULK:
688         case LIBUSB_TRANSFER_TYPE_INTERRUPT:
689                 return wince_submit_control_or_bulk_transfer(itransfer);
690         case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
691                 return wince_submit_iso_transfer(itransfer);
692         default:
693                 usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type);
694                 return LIBUSB_ERROR_INVALID_PARAM;
695         }
696 }
697
698 static void wince_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
699 {
700         struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
701         struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
702         struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
703         int status;
704
705         usbi_dbg("handling I/O completion with errcode %d", io_result);
706
707         if (io_result == ERROR_NOT_SUPPORTED && 
708                 transfer->type != LIBUSB_TRANSFER_TYPE_CONTROL) {
709                 /* For functional stalls, the WinCE USB layer (and therefore the USB Kernel Wrapper 
710                  * Driver) will report USB_ERROR_STALL/ERROR_NOT_SUPPORTED in situations where the 
711                  * endpoint isn't actually stalled.
712                  *
713                  * One example of this is that some devices will occasionally fail to reply to an IN
714                  * token. The WinCE USB layer carries on with the transaction until it is completed
715                  * (or cancelled) but then completes it with USB_ERROR_STALL.
716                  *
717                  * This code therefore needs to confirm that there really is a stall error, by both
718                  * checking the pipe status and requesting the endpoint status from the device.
719                  */
720                 BOOL halted = FALSE;
721                 usbi_dbg("checking I/O completion with errcode ERROR_NOT_SUPPORTED is really a stall");
722                 if (UkwIsPipeHalted(priv->dev, transfer->endpoint, &halted)) {
723                         /* Pipe status retrieved, so now request endpoint status by sending a GET_STATUS
724                          * control request to the device. This is done synchronously, which is a bit 
725                          * naughty, but this is a special corner case.
726                          */
727                         WORD wStatus = 0;
728                         DWORD written = 0;
729                         UKW_CONTROL_HEADER ctrlHeader;
730                         ctrlHeader.bmRequestType = LIBUSB_REQUEST_TYPE_STANDARD |
731                                 LIBUSB_ENDPOINT_IN | LIBUSB_RECIPIENT_ENDPOINT;
732                         ctrlHeader.bRequest = LIBUSB_REQUEST_GET_STATUS;
733                         ctrlHeader.wValue = 0;
734                         ctrlHeader.wIndex = transfer->endpoint;
735                         ctrlHeader.wLength = sizeof(wStatus);
736                         if (UkwIssueControlTransfer(priv->dev,
737                                         UKW_TF_IN_TRANSFER | UKW_TF_SEND_TO_ENDPOINT,
738                                         &ctrlHeader, &wStatus, sizeof(wStatus), &written, NULL)) {
739                                 if (written == sizeof(wStatus) &&
740                                                 (wStatus & STATUS_HALT_FLAG) == 0) {
741                                         if (!halted || UkwClearHaltHost(priv->dev, transfer->endpoint)) {
742                                                 usbi_dbg("Endpoint doesn't appear to be stalled, overriding error with success");
743                                                 io_result = ERROR_SUCCESS;
744                                         } else {
745                                                 usbi_dbg("Endpoint doesn't appear to be stalled, but the host is halted, changing error");
746                                                 io_result = ERROR_IO_DEVICE;
747                                         }
748                                 }
749                         }
750                 }
751         }
752
753         switch(io_result) {
754         case ERROR_SUCCESS:
755                 itransfer->transferred += io_size;
756                 status = LIBUSB_TRANSFER_COMPLETED;
757                 break;
758         case ERROR_CANCELLED:
759                 usbi_dbg("detected transfer cancel");
760                 status = LIBUSB_TRANSFER_CANCELLED;
761                 break;
762         case ERROR_NOT_SUPPORTED:
763         case ERROR_GEN_FAILURE:
764                 usbi_dbg("detected endpoint stall");
765                 status = LIBUSB_TRANSFER_STALL;
766                 break;
767         case ERROR_SEM_TIMEOUT:
768                 usbi_dbg("detected semaphore timeout");
769                 status = LIBUSB_TRANSFER_TIMED_OUT;
770                 break;
771         case ERROR_OPERATION_ABORTED:
772                 if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) {
773                         usbi_dbg("detected timeout");
774                         status = LIBUSB_TRANSFER_TIMED_OUT;
775                 } else {
776                         usbi_dbg("detected operation aborted");
777                         status = LIBUSB_TRANSFER_CANCELLED;
778                 }
779                 break;
780         default:
781                 usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(io_result));
782                 status = LIBUSB_TRANSFER_ERROR;
783                 break;
784         }
785         wince_clear_transfer_priv(itransfer);
786         if (status == LIBUSB_TRANSFER_CANCELLED) {
787                 usbi_handle_transfer_cancellation(itransfer);
788         } else {
789                 usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status);
790         }
791 }
792
793 static void wince_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
794 {
795         struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
796
797         switch (transfer->type) {
798         case LIBUSB_TRANSFER_TYPE_CONTROL:
799         case LIBUSB_TRANSFER_TYPE_BULK:
800         case LIBUSB_TRANSFER_TYPE_INTERRUPT:
801         case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
802                 wince_transfer_callback (itransfer, io_result, io_size);
803                 break;
804         default:
805                 usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type);
806         }
807 }
808
809 static int wince_handle_events(
810         struct libusb_context *ctx,
811         struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready)
812 {
813         struct wince_transfer_priv* transfer_priv = NULL;
814         POLL_NFDS_TYPE i = 0;
815         BOOL found = FALSE;
816         struct usbi_transfer *transfer;
817         DWORD io_size, io_result;
818
819         usbi_mutex_lock(&ctx->open_devs_lock);
820         for (i = 0; i < nfds && num_ready > 0; i++) {
821
822                 usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents);
823
824                 if (!fds[i].revents) {
825                         continue;
826                 }
827
828                 num_ready--;
829
830                 // Because a Windows OVERLAPPED is used for poll emulation,
831                 // a pollable fd is created and stored with each transfer
832                 usbi_mutex_lock(&ctx->flying_transfers_lock);
833                 list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
834                         transfer_priv = usbi_transfer_get_os_priv(transfer);
835                         if (transfer_priv->pollable_fd.fd == fds[i].fd) {
836                                 found = TRUE;
837                                 break;
838                         }
839                 }
840                 usbi_mutex_unlock(&ctx->flying_transfers_lock);
841
842                 if (found && HasOverlappedIoCompleted(transfer_priv->pollable_fd.overlapped)) {
843                         io_result = (DWORD)transfer_priv->pollable_fd.overlapped->Internal;
844                         io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh;
845                         usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd);
846                         // let handle_callback free the event using the transfer wfd
847                         // If you don't use the transfer wfd, you run a risk of trying to free a
848                         // newly allocated wfd that took the place of the one from the transfer.
849                         wince_handle_callback(transfer, io_result, io_size);
850                 } else if (found) {
851                         usbi_err(ctx, "matching transfer for fd %x has not completed", fds[i]);
852                         return LIBUSB_ERROR_OTHER;
853                 } else {
854                         usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]);
855                         return LIBUSB_ERROR_NOT_FOUND;
856                 }
857         }
858
859         usbi_mutex_unlock(&ctx->open_devs_lock);
860         return LIBUSB_SUCCESS;
861 }
862
863 /*
864  * Monotonic and real time functions
865  */
866 unsigned __stdcall wince_clock_gettime_threaded(void* param)
867 {
868         LARGE_INTEGER hires_counter, li_frequency;
869         LONG nb_responses;
870         int timer_index;
871
872         // Init - find out if we have access to a monotonic (hires) timer
873         if (!QueryPerformanceFrequency(&li_frequency)) {
874                 usbi_dbg("no hires timer available on this platform");
875                 hires_frequency = 0;
876                 hires_ticks_to_ps = UINT64_C(0);
877         } else {
878                 hires_frequency = li_frequency.QuadPart;
879                 // The hires frequency can go as high as 4 GHz, so we'll use a conversion
880                 // to picoseconds to compute the tv_nsecs part in clock_gettime
881                 hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency;
882                 usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency);
883         }
884
885         // Signal wince_init() that we're ready to service requests
886         if (ReleaseSemaphore(timer_response, 1, NULL) == 0) {
887                 usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
888         }
889
890         // Main loop - wait for requests
891         while (1) {
892                 timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0;
893                 if ( (timer_index != 0) && (timer_index != 1) ) {
894                         usbi_dbg("failure to wait on requests: %s", windows_error_str(0));
895                         continue;
896                 }
897                 if (request_count[timer_index] == 0) {
898                         // Request already handled
899                         ResetEvent(timer_request[timer_index]);
900                         // There's still a possiblity that a thread sends a request between the
901                         // time we test request_count[] == 0 and we reset the event, in which case
902                         // the request would be ignored. The simple solution to that is to test
903                         // request_count again and process requests if non zero.
904                         if (request_count[timer_index] == 0)
905                                 continue;
906                 }
907                 switch (timer_index) {
908                 case 0:
909                         WaitForSingleObject(timer_mutex, INFINITE);
910                         // Requests to this thread are for hires always
911                         if (QueryPerformanceCounter(&hires_counter) != 0) {
912                                 timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency);
913                                 timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps);
914                         } else {
915                                 // Fallback to real-time if we can't get monotonic value
916                                 // Note that real-time clock does not wait on the mutex or this thread.
917                                 wince_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp);
918                         }
919                         ReleaseMutex(timer_mutex);
920
921                         nb_responses = InterlockedExchange((LONG*)&request_count[0], 0);
922                         if ( (nb_responses)
923                           && (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) {
924                                 usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
925                         }
926                         continue;
927                 case 1: // time to quit
928                         usbi_dbg("timer thread quitting");
929                         return 0;
930                 }
931         }
932         usbi_dbg("ERROR: broken timer thread");
933         return 1;
934 }
935
936 static int wince_clock_gettime(int clk_id, struct timespec *tp)
937 {
938         FILETIME filetime;
939         ULARGE_INTEGER rtime;
940         DWORD r;
941         SYSTEMTIME st;
942         switch(clk_id) {
943         case USBI_CLOCK_MONOTONIC:
944                 if (hires_frequency != 0) {
945                         while (1) {
946                                 InterlockedIncrement((LONG*)&request_count[0]);
947                                 SetEvent(timer_request[0]);
948                                 r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS);
949                                 switch(r) {
950                                 case WAIT_OBJECT_0:
951                                         WaitForSingleObject(timer_mutex, INFINITE);
952                                         *tp = timer_tp;
953                                         ReleaseMutex(timer_mutex);
954                                         return LIBUSB_SUCCESS;
955                                 case WAIT_TIMEOUT:
956                                         usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?");
957                                         break; // Retry until successful
958                                 default:
959                                         usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0));
960                                         return LIBUSB_ERROR_OTHER;
961                                 }
962                         }
963                 }
964                 // Fall through and return real-time if monotonic was not detected @ timer init
965         case USBI_CLOCK_REALTIME:
966                 // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx
967                 // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00
968                 // Note however that our resolution is bounded by the Windows system time
969                 // functions and is at best of the order of 1 ms (or, usually, worse)
970                 GetSystemTime(&st);
971                 SystemTimeToFileTime(&st, &filetime);
972                 rtime.LowPart = filetime.dwLowDateTime;
973                 rtime.HighPart = filetime.dwHighDateTime;
974                 rtime.QuadPart -= epoch_time;
975                 tp->tv_sec = (long)(rtime.QuadPart / 10000000);
976                 tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100);
977                 return LIBUSB_SUCCESS;
978         default:
979                 return LIBUSB_ERROR_INVALID_PARAM;
980         }
981 }
982
983 const struct usbi_os_backend wince_backend = {
984         "Windows CE",
985         0,
986         wince_init,
987         wince_exit,
988
989         wince_get_device_list,
990         NULL,                           /* hotplug_poll */
991         wince_open,
992         wince_close,
993
994         wince_get_device_descriptor,
995         wince_get_active_config_descriptor,
996         wince_get_config_descriptor,
997         NULL,                           /* get_config_descriptor_by_value() */
998
999         wince_get_configuration,
1000         wince_set_configuration,
1001         wince_claim_interface,
1002         wince_release_interface,
1003
1004         wince_set_interface_altsetting,
1005         wince_clear_halt,
1006         wince_reset_device,
1007
1008         wince_kernel_driver_active,
1009         wince_detach_kernel_driver,
1010         wince_attach_kernel_driver,
1011
1012         wince_destroy_device,
1013
1014         wince_submit_transfer,
1015         wince_cancel_transfer,
1016         wince_clear_transfer_priv,
1017
1018         wince_handle_events,
1019
1020         wince_clock_gettime,
1021         sizeof(struct wince_device_priv),
1022         sizeof(struct wince_device_handle_priv),
1023         sizeof(struct wince_transfer_priv),
1024         0,
1025 };